High-performance photoconductivity and electrical transport of ZnO/ZnS core/shell nanowires for multifunctional nanodevice applications.

نویسندگان

  • Sehee Jeong
  • Minhyeok Choe
  • Jang-Won Kang
  • Min Woo Kim
  • Wan Gil Jung
  • Young-Chul Leem
  • Jaeyi Chun
  • Bong-Joong Kim
  • Seong-Ju Park
چکیده

We report the electrical and optical properties of ZnO/ZnS core/shell nanowire (NW) devices. The spatial separation of charge carriers due to their type II band structure together with passivation effect on ZnO/ZnS core/shell NWs not only enhanced their charge carrier transport characteristics by confining the electrons and reducing surface states in the ZnO channel but also increased the photocurrent under ultraviolet (UV) illumination by reducing the recombination probability of the photogenerated charge carriers. Here the efficacy of the type-II band structure and the passivation effect are demonstrated by showing the enhanced subthreshold swing (150 mV/decade) and mobility (17.2 cm2/(Vs)) of the electrical properties, as well as the high responsivity (4.4×10(6) A/W) in the optical properties of the ZnO/ZnS core/shell NWs, compared with the subthreshold swing (464 mV/decade), mobility (8.9 cm2/(Vs)) and responsivity (2.5×10(6) A/W) of ZnO NWs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shell Layer Thickness-Dependent Photocatalytic Activity of Sputtering Synthesized Hexagonally Structured ZnO-ZnS Composite Nanorods

ZnO-ZnS core-shell nanorods are synthesized by combining the hydrothermal method and vacuum sputtering. The core-shell nanorods with variable ZnS shell thickness (7-46 nm) are synthesized by varying ZnS sputtering duration. Structural analyses demonstrated that the as-grown ZnS shell layers are well crystallized with preferring growth direction of ZnS (002). The sputtering-assisted synthesized ...

متن کامل

Aqueous Phase Synthesis and Enhanced Field Emission Properties of ZnO-Sulfide Heterojunction Nanowires

ZnO-CdS, ZnO-ZnS, and ZnO-Ag2S core-shell heterojunction structures were fabricated using low-temperature, facile and simple aqueous solution approaches. The polycrystalline sulfide shells effectively enhance the field emission (FE) properties of ZnO nanowires arrays (NWAs). This results from the formation of the staggered gap heterointerface (ZnO-sulfide) which could lead to an energy well at ...

متن کامل

Facile synthesis of core/shell ZnO/ZnS nanofibers by electrospinning and gas-phase sulfidation for biosensor applications.

This study describes a new method of passivating ZnO nanofiber-based devices with a ZnS layer. This one-step process was carried out in H2S gas at room temperature, and resulted in the formation of core/shell ZnO/ZnS nanofibers. This study presents the structural, optical and electrical properties of ZnO/ZnS nanofibers formed by a 2 nm ZnS sphalerite crystal shell covering a 5 nm ZnO wurtzite c...

متن کامل

High-Performance Dye-Sensitized Solar Cells Based on Morphology-Controllable Synthesis of ZnO–ZnS Heterostructure Nanocone Photoanodes

High-density and well-aligned ZnO-ZnS core-shell nanocone arrays were synthesized on fluorine-doped tin oxide glass substrate using a facile and cost-effective two-step approach. In this synthetic process, the ZnO nanocones act as the template and provide Zn2+ ions for the ZnS shell formation. The photoluminescence spectrum indicates remarkably enhanced luminescence intensity and a small redshi...

متن کامل

Hierarchically structured nanowires on and nanosticks in ZnO microtubes

We report both coaxial core-shell structured microwires and ZnO microtubes with growth of nanosticks in the inner and nanowires on the outer surface as a novel hierarchical micro/nanoarchitecture. First, a core-shell structure is obtained-the core is formed by metallic Zn and the semiconducting shell is comprised by a thin oxide layer covered with a high density of nanowires. Such Zn/ZnO core-s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS applied materials & interfaces

دوره 6 9  شماره 

صفحات  -

تاریخ انتشار 2014